If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41=-16x^2+50x+6
We move all terms to the left:
41-(-16x^2+50x+6)=0
We get rid of parentheses
16x^2-50x-6+41=0
We add all the numbers together, and all the variables
16x^2-50x+35=0
a = 16; b = -50; c = +35;
Δ = b2-4ac
Δ = -502-4·16·35
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{65}}{2*16}=\frac{50-2\sqrt{65}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{65}}{2*16}=\frac{50+2\sqrt{65}}{32} $
| 15/5=5/a | | 1.3x=0.2 | | 11(x+2=11(-2+x) | | 14n-8=4(3n+7) | | 3(x-2)+11=5x-8 | | x/2+7/2=12 | | 14÷9=7u | | 3(x-4)=5x+68 | | 9q+7q=6 | | 5h-14=16 | | 6+(6+2)+(6+4)=4x6 | | -2(h-5)=-2 | | -2(2x+6)=24 | | X+13=2x+-23 | | -2y+5+5y=23 | | 5.5y×y=23 | | 2/3y+11=27 | | 4x-3=4x+7= | | x+9-2x-1=-13 | | o/12-7=3 | | 6.5g+8=2.5g+32 | | x.x2=9841 | | 7×-8=5x+8 | | -2+5y+5y=23 | | 7x+-8=-29 | | 3x-51=4296 | | -8=j-14 | | y+(.06y)=200 | | −3=m−7 | | 3x-2x+10=153 | | 9(x+12)-x=-22x-12 | | 7x^2+15x-12=-2x |